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Abstract. The choice of a similarity measure is very important to com-
pare between two samples. In addition, the similarity between many
fuzzy sets (i.e., many linguistic variables) needs aggregation operators
which can influence the fuzzy similarity results. In this paper we com-

pare results of fuzzy implications aggregated to a fuzzy similarity mea-
sure applied to shapes recognition which are described by an extended

curvature scale space (CSS) descriptor. We present experimental results

on the vision Speech and Signal Processing Surrey University database.
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1 Introduction

In several system of recognition, clustering, classification, ctc. a similarity mca-
sure is used. The similarity of two samples is often cvaluated by mecasuring a
distance between their featurcs. Thus, two samples arc not considered similar if
the difference between their sets of features is obvious.

Sclecting the suitable distance or similarity is not a trivial task. Our purposc is
to use fuzzy similarity measurc to comparc between shapes. A fuzzy similarity
measures scale the cquality degree between two fuzzy scts. In literaturc, manly
fuzzy similarity mecasures were presented and discussed c.g. [1,2]. In this pa,pci.,
we aggregate a fuzzy similarity measure with fuzzy implications to recognize
shapes. We present and compare results for cach aggregation.

In section 2, we present the description of the shape databasc which is followed
by the construction of correspondent fuzzy database. In section 4, we give an
overview of some fuzzy similarity measures from litcrature and some opcrations
on fuzzy scts. Thus, we present a comparative study of experimental results of

similarity measurcs aggregate with fuzzy opcrators.

2 Database Shape Presentation

We use the Vision, Speech and Signal Processing Surrcy University databasc,
which contains about 1100 images of marinc creatures. Each image shows onc
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distinct species on a uniform background. Every image is processed to recover

the boundary cdge, which is then represented by an extended curvature scale
spacc (CSS) descriptors. '

2.1 Curvature Scale Space Descriptors

Introduced by Mokhtarian ct al [3,4], the CSS descriptors register the concav-
itics of a curve as it goes through successive filtering. The role of filtering is
to smooth out the curve and gradually climinate concavitics of increasing size.
Morc preciscly, given a form described by its normalized planar contour curve.

F(u) = {z (u),y(v) lu € 0,1)} . (1)

The curvature at any point u is defined as the tangent angle to the curve and is
computed as:

k(U) = Ty (u) yuu(u) = Tyu (’U,) yau (u)
(xu (u)2 + Yy (u)z) :

To compute its CSS descriptors, a curve is repeatedly smoothed out using a
Gaussian kernel g(u,a). The contour of the filtered curve is represented as:

(2)

I'(u) ={z(v,0),y(u,0)lue0,1]} . (3)

where, x(u,0) and y(u,0) represent the result of convolving x(u) and y(u) with
g(u,0), respectively. The curvature k(u,o) of the smoothed out curve is repre-
scnted as:

k(u,0) = Ty (1, ) Yuu (1, T) = Tyy (1, 0) Yy (u,0) .
(xu (w.0)" + 3 (u, 0)2) i

The main ideca bchind CSS descriptors is to extract inflection points of a curve
at different values of 0. As o increascs, the evolving shape of the curve becomes
smoother and we notice a progressive disappcarance of the concave parts of the
shape until we end up with a completely convex form (Fig. 1.). Using the curve’s
multi-scale representation, we can locate the points of inflection at cach scale
(i.c. points where k(u,0) = 0). A graph, called CSS image, specifying the location
u of these inflection points vs. the valuc of o can be crcated:

(4)

I(u,0) = {(u,0) |k (u,0) =0} . (5)

Figure 2 shows the CSS image corresponding to the shape shown in Fig. 1. Differ-
ent peaks present in the CSS image correspond to the major concave scgments of
the shape. The maxima of the peaks are cxtracted and used to describe the input
shape. Even though the CSS descriptors have the advantage of being invariant
to scale, translation, and rotation, and arc shown to be robust and tolerant of
noisc, they arc inadequate to represent the convex scgments of a shape. In addi-
tion, the CSS descriptors can be considered as local features and hence do not
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capture the global shape of an image contour. The following scction presents a
remedy (the extended CSS descriptors) for thesc drawbacks.
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Fig. 1. Evolution of the form according to the smoothing scale o
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Fig. 2. Creating the CSS image of a shape

2.2 Extended CSS Descriptors

Kopf et al [5] presented a solution to remedy the inability of the CSS descriptors
to represent convex segments of a shape. The idea they proposed is to create
a dual shape of the input shape where all convex segments arc transformed to
concave segments. The dual shape is crcated by mirroring the input shape with
respect to the circle of minimum radius R that encloses the original shape (Fig.
3.). More precisely, each point (x(u),y(u)) of the original shape is paired with a
point (x’(u),y’(u)) of the dual shape such as the distance from (x(u),y(u)) to the
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circle is the same from (x’(u),y’(u)) to the circle. The coordinates of the circle’s
centre O(M,, M,,) arc calculated as:

1 N

MI=N;z(u) : (6)
i N

M, =N;y(u) - (7

The projected point (x’(u),y’(u)) is located at

2R — Dijiuy 4
o' (u) = ——=—20YW) (3 () — a4 M,
Da(u),y(y) L5 e ®)

2R-D,
/ _ z(u),y(u)
y'(u) = ———2 (y(u) - M) + M, .

Dz(u),y(u) (y (u) y) y 9)
where, Dg(y) y(u) is the distance between the circle’s centre and the original
shape pixel.

Since CSS descriptors as considered local features, we decided to use two extra
global features: circularity and eccentricity. Circularity is defined as:

2

’ p
ar = Z ’ (10)

where, P is the perimeter of the shape and A is its arca. Eccentricity is defined
as:

ecc = 1/ 2mez
k't (11)

where, Amaz and Anin are the cigenvalues of the matrix A

A= {#2,0 ﬂl,l:{ ' (12)
H1,1 Ho,2

K20, 41,1, and po 2 are the central moments of the shape defined as:
Hpq = Z Z (3: - j)p (y T g)q . (13)
Ty

with Z and ¢ representing the coordinates of the shape’s centroid. The cccen-
tricity feature is size, rotation and translation invariant.

The extended CSS descriptors we used in the image indexing are a combination
of four sets of features:

— Circularity feature (global feature)

— Eccentricity feature (global feature)

— (CSS descriptors of original shape (local features)
— CSS descriptors of dual shape (local features)
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Fig. 3. Creating a dual shape with respect to an enclosing circle

3 Construction of Fuzzy Shapes Database

In this section, we arc interesting to crcate a fuzzy shapes database. This stage
permits to pass from real database constructed by real values for extended CSS
descriptors to a fuzzy databasc. This last data arc values between 0 and 1, ap-
pointing membership degrees to fuzzy sets [6]. Thus, every featurc of shapes is
represented with fuzzy sets which design fuzzy membership function.

To choose the membership functions, we divide database shape on two databases:
the first constituted of 734 shapcs serves as training database and the sccond
constituted of 366 shapes serves as test database. Every shape is rcprcscntcd by
the extended CSS descriptor defined in second section.

To represent fuzzy sets of concavity and convexity we think that abscises arc
not important to retain for matching. Because, every shape can take different
positions, so two shapes can be similar if concavity ordinates arc equal indepen-
dently of abscises (i.c. one abscises can be on the right, other on the left). So,
we retain for each shape: cccentricity, circularity, ordinate concavity points and
ordinates convexity points.

We find that values of concavity, convexity and circularity can be represented
by three fuzzy sets: low medium and high. However, the cccentricity is also rep-
resented by two fuzzy scts: low and high. ¢

We choose trapezoidal function to represent fuzzy sets. We present below (Fig.

4.) the fuzzy sets for the feature convexity.
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Fig. 4. Convexity membership functions

The real values of CSS descriptors of cach shape are fuzzified by calculating
the membership degrees to correspondent functions.

4 Overview of Some Fuzzy Similarity Measures

Many fuzzy similarity mcasurcs arc presented in literature; in the scquel we
present some of them.

Let U = {z1,22,...,2n} a discoursc universe, A and B tow fuzzy scts in the
universe of discourse defined as follow:

A={(z,pa(@))lz € U,pa(z) € 0,11} , B = {(z, 5 (z)) |z € U, 15 (x) € [0, 1]}
Suppose a and b the vector representations of the fuzzy sets A and B defined as
a=(a1,a2,...,an) and b = (b1, by,...,b,), a;,b; € [0,1], i =1,2,...,n.

— Mecasures proposed in [7]

_ 1N laimbi ,
S;=1 ; = (14)
Sy = max (min (a;, b;)) . (15)

8 = g L . (16)

max (a.a, b.b)
— Mcasures proposed in [8]

! in(ai,b:)
¥a g_l(_a__
5,4: i=1 maz(a,,b;) . (17)

with the convention % =1

— Measures proposed in [9)

71
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fuzzy similarity of Lukasiewiez:
Se¢ =inf (1 — |a; — bi]) . (19)

Fuzzy similarity of Godel:

S7 =inf (a;i —co bi) - (20)

where
Jlis 1if a; = bi
@i Go % =  min (a;, bi) else

Fuzzy similarity of Goguen:
Sg =inf (a; —¢ bi) . (21)

1 ifai = bi

where a; —¢ bi = { min(ai,b:) oo
maz(a.,b;)

5 Opertations on Fuzy Sets

As for classical sets, operations are defined on fuzzy sets, such as intersection,
union, complement, etc. In the literature on fuzzy sets, a large number of possible
definitions are proposed to implement intersection, union and complement. The

operators defined by Zadeh are:

— Intersection operator: min(ua(z), us(z))

— Union operator: maz(pa(z), pa(z))

Where A and B are fuzzy sets defined in precedent section.

General forms of intersection and union are represented by triangular norms (T-
norms) and (T-conorms) and designs fuzzy implications.

A fuzzy implication is a function from [0, 1] x [0,1] to [0,1] which determinc the
verity degree of the preposition £ = y. Table 1 gives examples of implications
used most often [10, 11].
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Table 1. Examples of fuzzy implications

Implication name Function
Lukasiewicz min(1-x+y,1)
Reichenbach 1-x+xy
Gogien min($,1)if z#0
1 else

Kleene-Dienes max (1-x, y)
Brouwer-Gdédel Luf- o= v

y else
Rescher-Gaines e

0 else
Willmott max (1-x, min(x,y))

6 Similarity Measures Based on Fuzzy Logic

Our objective is to measure the similarity of two shapes having fuzzified at-
tributes according to fuzzy sets of features. Let shapes A and B be described
by M linguistic variables v; and for each linguistic variable v;, linguistic values
are defined L. Each linguistic value Li is represented by a fuzzy set with a
membership functlon L - The 51m11ar1ty of A and B is computed on two steps:

— Compute similarity of A and B according to one linguistic value L} for all
variables v;, Sp: (A, B)

— Compute sxmllarlty of A and B according to all lingistic values for all vari-
ables, S(A,B)

We obtain similarity measures S L: (4, B) of A and B according to every linguis-
tic value L} for all variables v;. Thus, we must find an aggregation or a rela-
tion bctween similarity degrees Sp: (A, B) to find the similarity S(A,B) of two
shapes. So, we use implication opcrators to compute this similarity. We choose
the similarity measurement Sg defined in section 4 (equation (19)) to compute
S LL(A’ B). Then, we aggregate the results to implication operators defined in
section 5 and wec compare results.

7 Experimental Results

We trial similarity measurc S aggregated to each implication and we compare
results of matching two images from test database to 100 images of training set
database (Fig. 5. and Fig. 6.). The images retrieved with the highest similarity
rates (i.e., degree of similarity equal 0.5 or higher) shown in Fig. 5. b and Fig. 6.
b obtained, using Sg aggregated to Godel implication and the images retrieved
with the highest similarity ranks shown in Fig. 5. ¢ and Fig. 6. c obtained, using
Se aggregated to Willmott implication.

73
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Fig. 5. (a) Target image (b) matching images using Se and Gédel implication (c)

matching images using Ss and Willmott implication
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Fig. 6. (a) Target image (b) matching images using Sg and Gddel implication (c) first’s
matching images using Sg and Willmott implication
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If we examince Fig. 5. and Fig. 6., we remark that the results produced with
Se and Godel implication are different from the results produced with Sg and
Willmot implication. To find the implication aggregated with Sg which produces

best results, we compute recall ratc and precision rate that we present in table
2.

Table 2. Results obtained for each implication aggregated with Se

Implication  Shape Recall rate (%) Precision rate (%)

Lukasiewicz &< 60% 75%
> 57.14% 72.72%

Reichenbach 6) 57,14% 100%
[ 61,53% 72.72%

Goguen 6) 80% 100%
R 61,53% 72.72%

Kleene-Dienes G 57.14% 100%
WD 61,53% 72.72%

Godel 6) 80% 100%
D 87,5% 63.63%
Rescher-Gaines 6 80% 100%
K> 87,5% 63,63%

Willmott 6 66,66% 100%
YQ 75% 54,54%

We can obscrve from the table 2 that the best results are produced by Se
aggregated with Goguen, Godel or Rescher-Gaines implications.

8 Conclusion

Eventually, we presented a comparative study of aggregation implications to a
fuzzy similarity applicd to shape recognition. The experimental results show the
difference between the implications aggregation. So, for the same shape sample,
we found for the aggregation of Godel implication to a fuzzy similarity a rcc.all
ratc equal to 80% and a precision rate cqual to 100% and for the aggregation
of the Willmott implication to the fuzzy similarity a recall rate cqual to. 66,66%
and a precision rate cqual to 100%. Thus, we show with this comparison the
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importance of the choice of the aggregation operator in order to compute the
fuzzy similarity between many linguistic variables.
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